Digital 1/0

CSE 132

Arduino Input/Output

e 20 pins on physical chip can be configured to do
digital input, digital output, analog input, analog
output (not all pins can do each function)

* We first configure pins at startup, then use them

const int myPin =13;

void setup() {
pinMode(myPin, OUTPUT);

}

void loop() { //generates square wave
digitalWrite(myPin, LOW);
digital Write(myPin, HIGH);

}

Digital Output LED (light-emitting diode)

| | | Arduinod
V3 BV Win
Power
— AREF D12 |—
Arduino D11 f—
00—
09 P
'_g D&
=
Q b7
S
& DE o
E Pissd
oh
7]
— A O f— %
a2 p%.:: D3 P o
2
— A3 3 oz —
E -
—_— g o1 ls www._arduino.cc
T | f—.’ PDWERl
— MG O f— @5V Gnd Vin
GMD

Building Circuits

5 horizontal holes are connected:

Building Circuits

 Connect components using breadboard:

D13 ----------
T | EEEEETEmsus

3300

LEDs

o

* Anode is “+” side, cathode is “—" side
 Anode has longer lead (assuming not clipped)
e Cathode is the flat side on LED body

Resistor Color Codes

15t two digits are values ' m

3rd d|g|t IS mUIt|p||er [1 dlglt 2"dlg]t mulﬂpller
4t digit is tolerance
200 to 500 Q gives good -
light out of LED
We will use 330 Q, or
-brown
\ d (£
x 101 Q) s gold

What Inputs Can You Think Of?

Keyboard

Mouse

Webcam
Temperature
Microphone

USB

Internet

External memory
Power

* Emergency stop button
* Proximity detector
* Motion detector

Digital Inputs from Physical World

e Example use case
— Proximity detector
— Garage door safety beam

* Sensing technologies
— Capacitive
— Inductive
— Optical
— Radar
— Hall-effect (magnetic)

Simplest Digital Input

e%eng,
* Push-button switch .
— Pressed = 1, HIGH, TRUE O)
— Not-pressed = 0, LOW, FALSE Stop

* Electro-mechanical device
— When button is pressed, electrical contacts conduct
— When make/break contact, the contacts can bounce
— This bouncing can happen over milliseconds
— But software operates at microsecond scales
— Even a simple push-button isn’t so simple!

| RST

AREF

AO

Al

A2

A3

A4

A5

3Vv3 5V
Power
Arduino
>
8

GND

Vin

Digital Input/Output

é

S2

Rl

Push-button
Schematic

< Push here

< Voltage here goes high

Software

e Switch between input pin and +5V
— Input goes HIGH when switch is pressed
— Input goes LOW when switch is not pressed

setup() {
pinMode(pin, INPUT);

}

loop() {
inputVal = digitalRead(pin);

}

Watch out for signaling convention!

+5V

* Switch between input pin and GND % fle

— Input LOW when switch is pressed 50

* Why would one do this? $

 Because the resistor is available,

built into the processor g uC

setup() { DO
pinMode(pin, INPUT_PULLUP);

}

i|f—oo

Switch “Debouncing”

Read switch state
Wait enough time for switch to quit bouncing
Read switch state again

if two switch states agree
Done

else
Start over

What about many switches?

/]
/]
/]
/]

/]

e
i R N
/|

/]

/]
VA

/]
SN

/]
A

/]

Digital outputs (from Arduino)

/|

Digital inputs (into Arduino)

Quiz Time

* Go to Canvas and answer the single question
for Quiz 2A

 What does LED stand for?
— Light Emitting Diode
— Light End Device
— Long Electricity Digit
— Last Ever Device

Analog to Digital Conversion

* Convert physical property to voltage signal

* A/D converter on Arduino converts voltage
signal to digital representation

— 10-bit A/D converter has range 0 to 210 -1
(0 to 1023) for voltage range 0 to Ve

O > AO Arduino

physical analog
sensing voltage

Signal (mV)

Understanding Ranges
5000 1000
4000 /) 800 ‘/.
3000 // 600 /
2000 / 400

1000 // 200
0 0

A/D counts

0 20 40 60 80 100 0 1000 2000 3000 4000 5000
Weight (Ib) Signal (mV)
signal = m X weight + b counts = m X signal + b
mV cnt ,
signal = 43 s X weight + 200mV counts = O'ZW X signal + 0
counts = 8 6c_nt X weiaght + 40 weight = 0.116£ X counts — 4.65
b g cnt

Noisy Analog Signals

Qriginal signal § hosg Moisy signal

* Noise is ever present in analog signals

* For stable signal, quick fix is to average several
readings

N
1
avg = NZA/D input;
1

Simple Voltage Divider

https://www.allaboutcircuits.com/tools/voltage-divider-calculator

Simple Voltage Divider

" O— R1

R1

out

g..._._..c}i Vv R2

[O3 GND

R
L Vout = =
= R{+R,

5V

https://www.allaboutcircuits.com/tools/voltage-divider-calculator
https://ez.analog.com/ez-blogs/b/engineering-mind/posts/designing-a-kelvin-varley-potentiometer-part-1-of-3-resistors-in-voltage-divider

What about fractions?

* Positional number systems work on both sides of
the decimal point (radix point).

* |f radix isr (n integer digits, m fractional digits):

val=a, ;- rMt+a , - rmM?+.+a,-r°+a;-rt+a,-r2+a -rm

* .8, WXYZ; =W 16+x+y-161+z-167
or WXYyz,=W:2+x+y-21+z-272

Two kinds of numbers

* Integers — radix point is assumed to be at the
far right end of the digits:

—Eg. 01001110.

* Fixed point —radix point is at a given, fixed
location:
—E.g. 0100.1110

— 0.1001110 is a common representation on digital
signal processors

Q notation

Qn.m means a number with n+m bits (digits),
n integer and m fractional. Sign bit is often in
addition to this.

E.g., Q3.4 for 0100.1100, with value 4.75

Qm means a number with m+1 bits, m are
fractional

E.g., Q3 notation would have 4 bits and the
following values

— wxyz=w.xyz=w- (-1)+x-(1/2)+y-(1/4) + z- (1/8)

— range is now -1 to +7/8, with resolution 1/8

Floating point representation

What about the reals? Use scientific notation.

In base 10:x - 10Y 0.32 x 103 = 0.00032

In base 2: x - 2V called floating point
™7
‘ Lexponent

_ mantissa

IEEE Floating Point

* Limited range of x and vy (fixed # of bits) means
we cannot represent every real number

exactly

* |EEE std. 754 describes a standard form for
floating point number representations

— Single precision is 32 bits in size
— Double precision is 64 bits in size

Single precision (32 bits)

31 30 23 22
|_s | exponent (e) | fraction (f)
1 8 bits 23 bits

value = (-1)s X 2¢127 < 1 f
T hidden "1"

range = = 2 X 10+38

31 30 23 22 0

|_s | exponent (e) | fraction (f)

s=0,e=0,f=0= value =zero
e = 255, f =0 = value = (-1)° x infinity

e = 255, f # 0 = value = “not a number” triggers
exception

e=0, f#0 = denormalized
value = (-1)° x 27126 x O.f
T hidden “0”

Note use of sign-magnitude for entire number,
and excess notation (excess 127) for exponent

Double precision (64 bits)

63 62 Hhe bl
|_s | exponent (e) | fraction (f)
1 11 bits B2 bits

value = (-1)s X 2¢-1023 X 1 f
T hidden "1"

range = £ 2 X 10*308
e=0, f 2z 0= denormalized
value = (-1)s X 2-1022 < Q. f

Text — Characters and Strings

 ASCIl — American Standard Code for Information
Interchange

— 7-bit codes representing basic Latin characters and

numbers [A-Z, a-z, 0-9], some common punctuation,
and control characters

— There are a number of extensions to 8 bits, but only
the 7-bit codes really standard.

* Unicode — 8- or 16-bit codes extending to a much
wider set of languages

— The first 128 codes are equivalent to the 7-bit ASCI|
standard

C Strings

e Strings are sequences of ASCII characters, stored
one byte per character (8 bits), terminated by a
NULL (zero) character

e E.g., “Hello!”

01001000 ‘H’ O0x48
01100101 ‘e’ 0x65
01101100 I Ox6C
01101100 I Ox6C
01101111 ‘o’ Ox6f
00100001 v Ox21

00000000 NULL 0x00

ASCII Facts

 Numerical digits are assigned in order of
increasing value

e, ‘0"=0x30
1" =0x31
2" =0x32
‘9" = 0x39

* For single character, value conversion is simply a
difference of 0x30

More ASCII Facts

Letters are also assigned in lexicographical order:
‘A =0x41
‘B’ = 0x42
‘7’ = 0x5a

‘a’ = 0x61
‘b’ = 0x62

‘2’ = Ox7a

Upper/lower case conversion is simply a difference of 0x20

Still More ASCII Facts

e First 32 characters (0-Ox1f) are control codes:
0x00 *@ null (C string terminator)
0x07 AG bell
Ox0a M line feed
OxOc AL form feed

Ox0d "M carriage return

Line breaks are not standardized

* End of line conventions differ by operating
system:
— In MS Windows: 0x0a, 0x0d is end of line

— In Unix/Linux: Ox0a is end of line
— 0x0a, linefeed, is sometimes called ‘newline’

* InC, \n’ is mapped to OS end of line
termination convention

Java Strings

Strings are represented via the class “String”
String objects are immutable

The character encoding is system specific,
e.g., either UTF-8 or UTF-16 (typical).

The length is an instance variable in the object
(in most implementations)

The characters are stored in a char|[] array
(again, in most implementations)

Unicode

Standard for character representation

— Supports wide variety of languages, symbols
UTF-8

— Variable length code with 8-bit code units

— U+0000 to U+007F are the same as ASCII

UTF-16

— Uses 16-bit code units, also variable length

— Latin + Greek + Cyrillic + Coptic + Armenian + Hebrew +
Arabic + Syrian + Tana + N’Ko fit in 16 bits

UTF-32
— Uses 32-bit code units, fixed length

Images

* Consider the following bits:
0x002400081881423c

0000 0000 0010 0100 0000 0000 0000 1000
0001 1000 1000 0001 010000100011 1100
 Make 1 dark and O light:

Images

* Arrange in rows, one byte per row:

g

* Each bitis a “pixel” in the image

ixels

Add color and more p

Color

e Additive color — primaries Red, Green, Blue

e Position close together and put diffuser above
— This builds one pixel

Logistics

* Assignment 1is due Jan 26
— Demos only available in first 15 minutes of lab
— Don’t assume lab time available to complete it!!!!
— Quiz 1B is also due Jan 26 (in the evening is OK)

— Yes, the logic puzzles are puzzles! Minor points off
for not getting them all right

* Module 2 is up nhow
— Studio 2 is Monday Jan 26

* Prep material is posted on webpage
* Get signed out by a TA in studio

— Assignment 2 is due Monday Jan 2

	Slide 1: Digital I/O
	Slide 2: Arduino Input/Output
	Slide 3: Digital Output LED (light-emitting diode)
	Slide 4: Building Circuits
	Slide 5: Building Circuits
	Slide 6: LEDs
	Slide 7: Resistor Color Codes
	Slide 8: What Inputs Can You Think Of?
	Slide 9: Digital Inputs from Physical World
	Slide 10: Simplest Digital Input
	Slide 11: Push-button Schematic
	Slide 12: Software
	Slide 13: Watch out for signaling convention!
	Slide 14: Switch “Debouncing”
	Slide 15: What about many switches?
	Slide 16: Quiz Time
	Slide 17: Analog to Digital Conversion
	Slide 18: Understanding Ranges
	Slide 19: Noisy Analog Signals
	Slide 20: Simple Voltage Divider
	Slide 21: Simple Voltage Divider
	Slide 22: What about fractions?
	Slide 23: Two kinds of numbers
	Slide 24: Q notation
	Slide 25: Floating point representation
	Slide 26: IEEE Floating Point
	Slide 27: Single precision (32 bits)
	Slide 28: 31 30 23 22 0 | s | exponent (e) | fraction (f) |
	Slide 29: Double precision (64 bits)
	Slide 30: Text – Characters and Strings
	Slide 31: C Strings
	Slide 32: ASCII Facts
	Slide 33: More ASCII Facts
	Slide 34: Still More ASCII Facts
	Slide 35: Line breaks are not standardized
	Slide 36: Java Strings
	Slide 37: Unicode
	Slide 38: Images
	Slide 39: Images
	Slide 40: Add color and more pixels
	Slide 41: Color
	Slide 42: Logistics

