
Digital I/O

CSE 132

Arduino Input/Output
• 20 pins on physical chip can be configured to do

digital input, digital output, analog input, analog
output (not all pins can do each function)

• We first configure pins at startup, then use them
const int myPin = 13;

void setup() {

 pinMode(myPin, OUTPUT);

}

void loop() { //generates square wave

 digitalWrite(myPin, LOW);

 digitalWrite(myPin, HIGH);

}

Digital Output LED (light-emitting diode)

Building Circuits

• 5 horizontal holes are connected:

Building Circuits

• Connect components using breadboard:

D13

GND

LEDs

• Anode is “+” side, cathode is “–” side

• Anode has longer lead (assuming not clipped)

• Cathode is the flat side on LED body

Resistor Color Codes

• 1st two digits are values

• 3rd digit is multiplier

• 4th digit is tolerance

• 200 to 500 Ω gives good
light out of LED

• We will use 330 Ω, or
orange-orange-brown

33 x 101 Ω

What Inputs Can You Think Of?

• Keyboard

• Mouse

• Webcam

• Temperature

• Microphone

• USB

• Internet

• External memory

• Power

• Emergency stop button

• Proximity detector

• Motion detector

Digital Inputs from Physical World

• Example use case

– Proximity detector

– Garage door safety beam

• Sensing technologies

– Capacitive

– Inductive

– Optical

– Radar

– Hall-effect (magnetic)

Simplest Digital Input

• Push-button switch

– Pressed = 1, HIGH, TRUE

– Not-pressed = 0, LOW, FALSE

• Electro-mechanical device

– When button is pressed, electrical contacts conduct

– When make/break contact, the contacts can bounce

– This bouncing can happen over milliseconds

– But software operates at microsecond scales

– Even a simple push-button isn’t so simple!

Push-button
Schematic

 Push here

 Voltage here goes high

Software

• Switch between input pin and +5V

– Input goes HIGH when switch is pressed

– Input goes LOW when switch is not pressed

setup() {
 pinMode(pin, INPUT);
}

loop() {
 inputVal = digitalRead(pin);
}

Watch out for signaling convention!

• Switch between input pin and GND

– Input LOW when switch is pressed

• Why would one do this?

• Because the resistor is available,
built into the processor

setup() {
 pinMode(pin, INPUT_PULLUP);
}

Switch “Debouncing”

Read switch state

Wait enough time for switch to quit bouncing

Read switch state again

if two switch states agree

Done

else

Start over

What about many switches?

Digital inputs (into Arduino)

D
ig

it
al

 o
u

tp
u

ts
 (

fr
o

m
 A

rd
u

in
o

)

Quiz Time

• Go to Canvas and answer the single question
for Quiz 2A

• What does LED stand for?

– Light Emitting Diode

– Light End Device

– Long Electricity Digit

– Last Ever Device

Analog to Digital Conversion

• Convert physical property to voltage signal

• A/D converter on Arduino converts voltage
signal to digital representation

– 10-bit A/D converter has range 0 to 210 – 1
(0 to 1023) for voltage range 0 to VREF

A0 Arduino

physical
sensing

analog
voltage

Understanding Ranges

0

1000

2000

3000

4000

5000

0 20 40 60 80 100

Si
gn

al
 (m

V
)

Weight (lb)

𝑠𝑖𝑔𝑛𝑎𝑙 = 𝑚 × 𝑤𝑒𝑖𝑔ℎ𝑡 + 𝑏

𝑠𝑖𝑔𝑛𝑎𝑙 = 43
𝑚𝑉

𝑙𝑏
× 𝑤𝑒𝑖𝑔ℎ𝑡 + 200𝑚𝑉

0

200

400

600

800

1000

0 1000 2000 3000 4000 5000

A
/D

 c
o

u
n

ts

Signal (mV)

𝑐𝑜𝑢𝑛𝑡𝑠 = 𝑚 × 𝑠𝑖𝑔𝑛𝑎𝑙 + 𝑏

𝑐𝑜𝑢𝑛𝑡𝑠 = 0.2
𝑐𝑛𝑡

𝑚𝑉
× 𝑠𝑖𝑔𝑛𝑎𝑙 + 0

𝑐𝑜𝑢𝑛𝑡𝑠 = 8.6
𝑐𝑛𝑡

𝑙𝑏
× 𝑤𝑒𝑖𝑔ℎ𝑡 + 40 𝑤𝑒𝑖𝑔ℎ𝑡 = 0.116

𝑙𝑏

𝑐𝑛𝑡
× 𝑐𝑜𝑢𝑛𝑡𝑠 − 4.65

Noisy Analog Signals

• Noise is ever present in analog signals

• For stable signal, quick fix is to average several
readings

𝑎𝑣𝑔 =
1

𝑁
෍

1

𝑁

𝐴/𝐷 𝑖𝑛𝑝𝑢𝑡𝑖

Simple Voltage Divider

𝑉𝑜𝑢𝑡 =
𝑅2

𝑅1 + 𝑅2
𝑉𝑖𝑛

https://www.allaboutcircuits.com/tools/voltage-divider-calculator

Simple Voltage Divider

𝑉𝑜𝑢𝑡 =
𝑅2

𝑅1+𝑅2
5V

https://www.allaboutcircuits.com/tools/voltage-divider-calculator

+5V

GND

1

2

3

R1

R2

https://ez.analog.com/ez-blogs/b/engineering-mind/posts/designing-a-kelvin-varley-potentiometer-part-1-of-3-resistors-in-voltage-divider

What about fractions?

• Positional number systems work on both sides of
the decimal point (radix point).

• If radix is r (n integer digits, m fractional digits):
val = an-1 · rn-1 + an-2 · rn-2 + … + a0 · r0 + a-1 · r

-1 + a-2 · r
-2 + a-m · r

-m

• e.g., wx.yz16 = w · 16 + x + y · 16-1 + z · 16-2
or wx.yz2 = w · 2 + x + y · 2-1 + z · 2-2

Two kinds of numbers

• Integers – radix point is assumed to be at the
far right end of the digits:

– E.g. 01001110.

• Fixed point – radix point is at a given, fixed
location:

– E.g. 0100.1110

– 0.1001110 is a common representation on digital
signal processors

Q notation
• Qn.m means a number with n+m bits (digits),

n integer and m fractional. Sign bit is often in
addition to this.

• E.g., Q3.4 for 0100.1100, with value 4.75
• Qm means a number with m+1 bits, m are

fractional
• E.g., Q3 notation would have 4 bits and the

following values

– wxyz = w.xyz = w · (-1) + x · (1/2) + y · (1/4) + z · (1/8)

– range is now -1 to +7/8, with resolution 1/8

Floating point representation

What about the reals? Use scientific notation.

In base 10: x · 10y 0.32 × 10-3 = 0.00032

In base 2: x · 2y called floating point

  

  exponent

  mantissa

IEEE Floating Point

• Limited range of x and y (fixed # of bits) means
we cannot represent every real number
exactly

• IEEE std. 754 describes a standard form for
floating point number representations

– Single precision is 32 bits in size

– Double precision is 64 bits in size

Single precision (32 bits)

 31 30 23 22 0
 | s | exponent (e) | fraction (f) |
 1 8 bits 23 bits

 value = (-1)s × 2e-127 × 1.f
  hidden “1”

 range = ± 2 × 10±38

 31 30 23 22 0
 | s | exponent (e) | fraction (f) |

• s = 0, e = 0, f = 0  value = zero
• e = 255, f = 0  value = (-1)s × infinity
• e = 255, f ≠ 0  value = “not a number” triggers

exception
• e = 0, f ≠ 0  denormalized
 value = (-1)s × 2-126 × 0.f
  hidden “0”

• Note use of sign-magnitude for entire number,
and excess notation (excess 127) for exponent

Double precision (64 bits)

 63 62 52 51 0
 | s | exponent (e) | fraction (f) |
 1 11 bits 52 bits

 value = (-1)s × 2e-1023 × 1.f
  hidden “1”

 range = ± 2 × 10±308

 e = 0, f ≠ 0  denormalized
 value = (-1)s × 2-1022 × 0.f

Text – Characters and Strings

• ASCII – American Standard Code for Information
Interchange
– 7-bit codes representing basic Latin characters and

numbers [A-Z, a-z, 0-9], some common punctuation,
and control characters

– There are a number of extensions to 8 bits, but only
the 7-bit codes really standard.

• Unicode – 8- or 16-bit codes extending to a much
wider set of languages
– The first 128 codes are equivalent to the 7-bit ASCII

standard

C Strings

• Strings are sequences of ASCII characters, stored
one byte per character (8 bits), terminated by a
NULL (zero) character

• E.g., “Hello!”
 01001000 ‘H’ 0x48
 01100101 ‘e’ 0x65
 01101100 ‘l’ 0x6c
 01101100 ‘l’ 0x6c
 01101111 ‘o’ 0x6f
 00100001 ‘!’ 0x21
 00000000 NULL 0x00

ASCII Facts

• Numerical digits are assigned in order of
increasing value

 i.e., ‘0’ = 0x30

 ‘1’ = 0x31

 ‘2’ = 0x32

 ‘9’ = 0x39

• For single character, value conversion is simply a
difference of 0x30

More ASCII Facts

• Letters are also assigned in lexicographical order:
 ‘A’ = 0x41
 ‘B’ = 0x42

 ‘Z’ = 0x5a

 ‘a’ = 0x61
 ‘b’ = 0x62

 ‘z’ = 0x7a

• Upper/lower case conversion is simply a difference of 0x20

Still More ASCII Facts

• First 32 characters (0-0x1f) are control codes:

 0x00 ^@ null (C string terminator)

 0x07 ^G bell

 0x0a ^J line feed

 0x0c ^L form feed

 0x0d ^M carriage return

Line breaks are not standardized

• End of line conventions differ by operating
system:

– In MS Windows: 0x0a, 0x0d is end of line

– In Unix/Linux: 0x0a is end of line

– 0x0a, linefeed, is sometimes called ‘newline’

• In C, ‘\n’ is mapped to OS end of line
termination convention

Java Strings

• Strings are represented via the class “String”

• String objects are immutable

• The character encoding is system specific,
e.g., either UTF-8 or UTF-16 (typical).

• The length is an instance variable in the object
(in most implementations)

• The characters are stored in a char[] array
(again, in most implementations)

Unicode

• Standard for character representation
– Supports wide variety of languages, symbols

• UTF-8
– Variable length code with 8-bit code units

– U+0000 to U+007F are the same as ASCII

• UTF-16
– Uses 16-bit code units, also variable length

– Latin + Greek + Cyrillic + Coptic + Armenian + Hebrew +
Arabic + Syrian + Tāna + N’Ko fit in 16 bits

• UTF-32
– Uses 32-bit code units, fixed length

Images

• Consider the following bits:

0x002400081881423c

0000 0000 0010 0100 0000 0000 0000 1000

0001 1000 1000 0001 0100 0010 0011 1100

• Make 1 dark and 0 light:

Images

• Arrange in rows, one byte per row:

• Each bit is a “pixel” in the image

Add color and more pixels

Color

• Additive color – primaries Red, Green, Blue

• Position close together and put diffuser above

– This builds one pixel

Logistics

• Assignment 1 is due Jan 26
– Demos only available in first 15 minutes of lab

– Don’t assume lab time available to complete it!!!!

– Quiz 1B is also due Jan 26 (in the evening is OK)

– Yes, the logic puzzles are puzzles! Minor points off
for not getting them all right

• Module 2 is up now
– Studio 2 is Monday Jan 26

• Prep material is posted on webpage

• Get signed out by a TA in studio

– Assignment 2 is due Monday Jan 2

	Slide 1: Digital I/O
	Slide 2: Arduino Input/Output
	Slide 3: Digital Output LED (light-emitting diode)
	Slide 4: Building Circuits
	Slide 5: Building Circuits
	Slide 6: LEDs
	Slide 7: Resistor Color Codes
	Slide 8: What Inputs Can You Think Of?
	Slide 9: Digital Inputs from Physical World
	Slide 10: Simplest Digital Input
	Slide 11: Push-button Schematic
	Slide 12: Software
	Slide 13: Watch out for signaling convention!
	Slide 14: Switch “Debouncing”
	Slide 15: What about many switches?
	Slide 16: Quiz Time
	Slide 17: Analog to Digital Conversion
	Slide 18: Understanding Ranges
	Slide 19: Noisy Analog Signals
	Slide 20: Simple Voltage Divider
	Slide 21: Simple Voltage Divider
	Slide 22: What about fractions?
	Slide 23: Two kinds of numbers
	Slide 24: Q notation
	Slide 25: Floating point representation
	Slide 26: IEEE Floating Point
	Slide 27: Single precision (32 bits)
	Slide 28: 31 30 23 22 0 | s | exponent (e) | fraction (f) |
	Slide 29: Double precision (64 bits)
	Slide 30: Text – Characters and Strings
	Slide 31: C Strings
	Slide 32: ASCII Facts
	Slide 33: More ASCII Facts
	Slide 34: Still More ASCII Facts
	Slide 35: Line breaks are not standardized
	Slide 36: Java Strings
	Slide 37: Unicode
	Slide 38: Images
	Slide 39: Images
	Slide 40: Add color and more pixels
	Slide 41: Color
	Slide 42: Logistics

