
Timing and Analog Input

CSE 132

Simple Timing

• Use Thread.sleep() in Java

– Argument is integer number of milliseconds before
the method returns

for (int i=0; i < endTime; i++) {

 Thread.sleep(1000);

 System.output.println(i + “ seconds have elapsed”);

}

• Use delay() on Arduino

– Same approach as in Java

Effects of Simple Timing

• What are possible issues with this code?

while (true)

 wait for 1 second

 do some work

 output results

end while

Better Timing

• Use a free-running timer
– unsigned long millis()

– Returns # of milliseconds since reset

– Rolls over to zero after about 50 days

• Now we can use delta time techniques
while (true)

 if (millis() > loopEndTime) then

 loopEndTime += deltaTime

 do some work

 end if

end while

Impact of Delta Timing

while (true)

 if (millis() > loopEndTime) then

 loopEndTime += deltaTime

 do some work

 output results

 end if

end while

What if work has delays?

while (true)

 if (millis() > loopEndTime) then

 loopEndTime += deltaTime

 do some work

 end if

end while

Especially if work takes longer than deltaTime!

Think Like a Finite-State Machine

while (true)

 if (millis() > loopEndTime) then

 loopEndTime += deltaTime

 do some work

 end if

end while

Do some (but not all) of the work

Remember “state” information (in one or more variables)

Inside delta time conditional if, add switch statement

Finite State Machine (FSM)

• Useful concept for today’s studio software

• Used extensively in hardware and software
systems design and analysis

• Explicitly enumerate (i.e., list) all of the “states”
that our design can have, and articulate:

– What happens (e.g., is output) in each state

– What state is next under what conditions

• “States” represent what our design wishes to
remember

FSM Diagram

0
1

2

3
4

5

6

7

• A 3-bit counter cycles
from 0 to 7, and then
roles over back to 0

• Consider each count
value to be a “state”

• In each state, output is
simply value of count

• In each state, next state
is value+1

Stoplight Controller

NS-G

NS-Y

EW-GEW-Y

Ped

• NS-G: North/South Green

• NS-Y: North/South Yellow

• EW-G: East/West Green

• EW-Y: East/West Yellow

• Ped: Pedestrian Walk

Analog to Digital Conversion

• Convert physical property to voltage signal

• A/D converter on Arduino converts voltage
signal to digital representation

– 10-bit A/D converter has range 0 to 210 – 1
(0 to 1023) for voltage range 0 to VREF

A0 Arduino

physical
sensing

analog
voltage

Understanding Ranges

0

1000

2000

3000

4000

5000

0 20 40 60 80 100

Si
gn

al
 (m

V
)

Weight (lb)

𝑠𝑖𝑔𝑛𝑎𝑙 = 𝑚 × 𝑤𝑒𝑖𝑔ℎ𝑡 + 𝑏

𝑠𝑖𝑔𝑛𝑎𝑙 = 43
𝑚𝑉

𝑙𝑏
× 𝑤𝑒𝑖𝑔ℎ𝑡 + 200𝑚𝑉

0

200

400

600

800

1000

0 1000 2000 3000 4000 5000

A
/D

 c
o

u
n

ts

Signal (mV)

𝑐𝑜𝑢𝑛𝑡𝑠 = 𝑚 × 𝑠𝑖𝑔𝑛𝑎𝑙 + 𝑏

𝑐𝑜𝑢𝑛𝑡𝑠 = 0.2
𝑐𝑛𝑡

𝑚𝑉
× 𝑠𝑖𝑔𝑛𝑎𝑙 + 0

𝑐𝑜𝑢𝑛𝑡𝑠 = 8.6
𝑐𝑛𝑡

𝑙𝑏
× 𝑤𝑒𝑖𝑔ℎ𝑡 + 40 𝑤𝑒𝑖𝑔ℎ𝑡 = 0.116

𝑙𝑏

𝑐𝑛𝑡
× 𝑐𝑜𝑢𝑛𝑡𝑠 − 4.65

Noisy Analog Signals

• Noise is ever present in analog signals

• For stable signal, quick fix is to average several
readings

𝑎𝑣𝑔 =
1

𝑁
෍

1

𝑁

𝐴/𝐷 𝑖𝑛𝑝𝑢𝑡𝑖

Quiz Time

• Go to Canvas and answer the single question
for Quiz 3A

• What data type does millis() return?

– unsigned long

– unsigned int

– char

– float

	Slide 1: Timing and Analog Input
	Slide 2: Simple Timing
	Slide 3: Effects of Simple Timing
	Slide 4: Better Timing
	Slide 5: Impact of Delta Timing
	Slide 6: What if work has delays?
	Slide 7: Think Like a Finite-State Machine
	Slide 8: Finite State Machine (FSM)
	Slide 9: FSM Diagram
	Slide 10: Stoplight Controller
	Slide 11: Analog to Digital Conversion
	Slide 12: Understanding Ranges
	Slide 13: Noisy Analog Signals
	Slide 14: Quiz Time

