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Simple Timing

• Use Thread.sleep() in Java

– Argument is integer number of milliseconds before 
the method returns

for (int i=0; i < endTime; i++) {

 Thread.sleep(1000);

 System.output.println(i + “ seconds have elapsed”);

}

• Use delay() on Arduino

– Same approach as in Java



Effects of Simple Timing

• What are possible issues with this code?

while (true)

 wait for 1 second

 do some work

 output results

end while



Better Timing

• Use a free-running timer
– unsigned long millis()

– Returns # of milliseconds since reset

– Rolls over to zero after about 50 days

• Now we can use delta time techniques
while (true)

 if (millis() > loopEndTime) then

  loopEndTime += deltaTime

  do some work

 end if

end while



Impact of Delta Timing

while (true)

 if (millis() > loopEndTime) then

  loopEndTime += deltaTime

  do some work

  output results

 end if

end while



What if work has delays?

while (true)

 if (millis() > loopEndTime) then

  loopEndTime += deltaTime

  do some work

 end if

end while

Especially if work takes longer than deltaTime!



Think Like a Finite-State Machine

while (true)

 if (millis() > loopEndTime) then

  loopEndTime += deltaTime

  do some work

 end if

end while

Do some (but not all) of the work

Remember “state” information (in one or more variables)

Inside delta time conditional if, add switch statement



Finite State Machine (FSM)

• Useful concept for today’s studio software

• Used extensively in hardware and software 
systems design and analysis

• Explicitly enumerate (i.e., list) all of the “states” 
that our design can have, and articulate:

– What happens (e.g., is output) in each state

– What state is next under what conditions

• “States” represent what our design wishes to 
remember



FSM Diagram
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• A 3-bit counter cycles 
from 0 to 7, and then 
roles over back to 0

• Consider each count 
value to be a “state”

• In each state, output is 
simply value of count

• In each state, next state 
is value+1



Stoplight Controller
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• NS-G: North/South Green

• NS-Y: North/South Yellow

• EW-G: East/West Green

• EW-Y: East/West Yellow

• Ped: Pedestrian Walk



Analog to Digital Conversion

• Convert physical property to voltage signal

• A/D converter on Arduino converts voltage 
signal to digital representation

– 10-bit A/D converter has range 0 to 210 – 1       
(0 to 1023) for voltage range 0 to VREF
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Understanding Ranges
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Noisy Analog Signals

• Noise is ever present in analog signals

• For stable signal, quick fix is to average several 
readings
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Quiz Time

• Go to Canvas and answer the single question 
for Quiz 3A

• What data type does millis() return?

– unsigned long

– unsigned int

– char

– float
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