Timing and Analog Input

Simple Timing

e Use Thread.sleep() in Java

— Argument is integer number of milliseconds before
the method returns

for (inti=0; i < endTime; i++) {

Thread.sleep(1000);
System.output.printin(i + “ seconds have elapsed”);

J

e Use delay() on Arduino

— Same approach as in Java

Effects of Simple Timing

 What are possible issues with this code?

while (true)
wait for 1 second EEN
do some work [l

output results]
end while

[e .
rr~ T T T T 71>

Better Timing

e Use a free-running timer
— unsigned long millis()
— Returns # of milliseconds since reset
— Rolls over to zero after about 50 days

* Now we can use delta time techniques
while (true)
if (millis() > loopEndTime) then
loopEndTime += deltaTime

do some work
end if
end while

Impact of Delta Timing

while (true)
if (millis() > loopEndTime) then
loopEndTime +=deltaTime [

do some work [
output results]
end if
end while

— — — —
rr~. T T T 1T 71>

What if work has delays?

while (true)
if (millis() > loopEndTime) then
loopEndTime += deltaTime
mmm) do some work

end if
end while

Especially if work takes longer than deltaTime!

Think Like a Finite-State Machine

while (true)
mm) if (millis() > loopEndTime) then
loopEndTime += deltaTime
do some work

end if
end while

Do some (but not all) of the work
Remember “state” information (in one or more variables)
Inside delta time conditional if, add switch statement

Finite State Machine (FSM)

Useful concept for today’s studio software

Used extensively in hardware and software
systems design and analysis

Explicitly enumerate (i.e., list) all of the “states’
that our design can have, and articulate:

— What happens (e.g., is output) in each state

’

— What state is next under what conditions

“States” represent what our design wishes to
remember

FSM Diagram

A 3-bit counter cycles
from O to 7, and then
roles over back to 0

Consider each count
value to be a “state”

In each state, output is
simply value of count

In each state, next state
is value+1

Stoplight Controller

NS-G: North/South Green

NS-Y: North/South Yellow

EW-G: East/West Green

Ped: Pedestrian Walk

EW-Y: East/West Yellow @ @

Analog to Digital Conversion

* Convert physical property to voltage signal

* A/D converter on Arduino converts voltage
signal to digital representation

— 10-bit A/D converter has range 0 to 210 -1
(0 to 1023) for voltage range 0 to Ve

O > AO Arduino

physical analog
sensing voltage

Signal (mV)

Understanding Ranges
5000 1000
4000 /) 800 ‘/.
3000 // 600 /
2000 / 400

1000 // 200
0 0

A/D counts

0 20 40 60 80 100 0 1000 2000 3000 4000 5000
Weight (Ib) Signal (mV)
signal = m X weight + b counts = m X signal + b
mV cnt ,
signal = 43 s X weight + 200mV counts = O'ZW X signal + 0
counts = 8 6c_nt X weiaght + 40 weight = 0.116£ X counts — 4.65
b g cnt

Noisy Analog Signals

Qriginal signal § hosg Moisy signal

* Noise is ever present in analog signals

* For stable signal, quick fix is to average several
readings

N
1
avg = NZA/D input;
1

Quiz Time

* Go to Canvas and answer the single question
for Quiz 3A

 What data type does millis() return?
— unsigned long
— unsigned int
— char
— float

	Slide 1: Timing and Analog Input
	Slide 2: Simple Timing
	Slide 3: Effects of Simple Timing
	Slide 4: Better Timing
	Slide 5: Impact of Delta Timing
	Slide 6: What if work has delays?
	Slide 7: Think Like a Finite-State Machine
	Slide 8: Finite State Machine (FSM)
	Slide 9: FSM Diagram
	Slide 10: Stoplight Controller
	Slide 11: Analog to Digital Conversion
	Slide 12: Understanding Ranges
	Slide 13: Noisy Analog Signals
	Slide 14: Quiz Time

