
Computer Communications

CSE 1302

Today’s Outline

• Communicating between PC and Arduino
– Java on PC (either Windows or Mac)

• Streams in Java

• Observability
– SerialComm overview

• Protocol Design

• Images

Computer Communications
• Link that provides byte-level data delivery

– Network

– Serial port

• Ability to send and receive on each endpoint

• Must use a protocol to understand anything
other than individual bytes
– Individual data elements (ints, chars, strings, etc.)

– Higher-level, application-specific messages
• The user just pressed button “X”

• The pressure in vessel X is Y psi at time Z

• Needs to work across platforms
– E.g., Java on PC and C on Arduino

Java Communications uses Streams

• Upstream writer, downstream reader

• Source writes to stream

• Destination reads from stream

• Either endpoint might be a file or some other
input/output device, e.g.,

– Dest. could be Arduino connected via serial port

– Source could be the keyboard

Source Dest.

Stream Conventions
• FIFO ordering (First-In-First-Out)

• Protocol must be same at both ends of stream
for effective communication to take place

– Stream of bytes? chars? integers? what is a char?

• Properties supported by streams that “wrap”
other streams, e.g.,

InputStream in = new InputStream(…);

BufferedStream dataIn = new BufferedStream(in);

• Watch video for examples of user input streams

Wrapping Streams

• A stream can take another stream as a
parameter to its constructor

• The outer stream adds functionality to the
wrapped stream

• E.g.,
 SerialComm sc = new SerialComm(new SerialPort(…));

• This is called “decorator” pattern

• We will use SerialComm and SerialPort in upcoming
studios and assignments – starting with 4

Communications in Java

• Open COM port with SerialPort object

– Use SerialPort class, which we provide

– Works in Windows and Mac

• Wrap SerialPort with a SerialComm object

– You will write SerialComm class (some of it, anyway)

– What “properties” does SerialComm provide?

• Fixes up a data type inconvenience on input bytes

• Most importantly, provides a debugging capability

SerialPort class

SerialComm class

Read from

Arduino
Write to

Arduino

SerialComm class Functionality

Debug functionality (print data sent or received)

Back to Communications

• Streams are sequences of bytes

• We need data at a higher level of abstraction

– Integers

– Floats, Doubles

– Characters

– Strings

– More

• Protocols must be designed to enable this

– Build bigger things out of streams of bytes

Individual Data Elements

• Byte – basic network element

– writeByte(), readByte() in SerialComm class

– Serial.read(), Serial.write() in Arduino C

• Character

– Two bytes in Java

– One byte in C

• Integer

– Four bytes in Java

– Two bytes in C

Observability

• What is really going on?

• Option 1: stare at the code until inspired

– When that doesn’t work, make random change

• Option 2: don’t assume the code you actually
wrote does what you think it does!

– Alter code so that you discover what it really does

• On PC in Java, use the debugger!

• Or use System.out.print() to display on console

• On Arduino in C, use Serial.print()

Observability in Communications

• Need to know what is really going across the
communication link

• On sender and receiver:

– Display what is going out the output stream

– Display what is coming in the input stream

– Show the raw data (sequence of bytes)

• You will build these tools

– This is the primary purpose of SerialComm class

Quiz Time

• Go to Canvas and answer the single question
on Quiz 4A

• A stream delivers bytes in a "first-in, first-out"
order:

– True

– False

Protocol Design

• What do we want to communicate?

• How do we want to say it?

A Protocol for Us

Magic
Number Key Value

• Magic number is anchor of message
• Always first byte
• Unlikely in rest of message
• Reader can ignore bytes until it sees

magic number and then receive

Message format:

1 byte 1 byte 2 to n bytes

A Protocol for Us

Magic
Number Key Value

• Key tells what type of message
• Indicates both size and interpretation
• E.g., 2-byte temperature value
• E.g., 4-byte timestamp
• E.g., UTF-8 encoded error string
• Table of legal keys must be maintained

Message format:

1 byte 1 byte 2 to n bytes

A Protocol for Us

Magic
Number Key Value

• Actual content of message
• Key tells how to interpret

Message format:

1 byte 1 byte 2 to n bytes

Images

• Consider the following bits:

0x002400081881423c

0000 0000 0010 0100 0000 0000 0000 1000

0001 1000 1000 0001 0100 0010 0011 1100

• Make 1 dark and 0 light:

Images

• Arrange in rows, one byte per row:

• Each bit is a “pixel” in the image

Add color and more pixels

Color

• Additive color – primaries Red, Green, Blue

• Position close together and put diffuser above

– This builds one pixel

	Slide 1: Computer Communications
	Slide 2: Today’s Outline
	Slide 3: Computer Communications
	Slide 4: Java Communications uses Streams
	Slide 5: Stream Conventions
	Slide 6: Wrapping Streams
	Slide 7: Communications in Java
	Slide 8: SerialComm class Functionality
	Slide 9: Back to Communications
	Slide 10: Individual Data Elements
	Slide 11: Observability
	Slide 12: Observability in Communications
	Slide 13: Quiz Time
	Slide 14: Protocol Design
	Slide 15: A Protocol for Us
	Slide 16: A Protocol for Us
	Slide 17: A Protocol for Us
	Slide 18: Images
	Slide 19: Images
	Slide 20: Add color and more pixels
	Slide 21: Color

