Computer Communications



Today’s Outline

Communicating between PC and Arduino
— Java on PC (either Windows or Mac)

Streams in Java

Observability

— SerialComm overview

Protocol Design

Images



Computer Communications

Link that provides byte-level data delivery
— Network
— Serial port

Ability to send and receive on each endpoint

Must use a protocol to understand anything
other than individual bytes
— Individual data elements (ints, chars, strings, etc.)
— Higher-level, application-specific messages

* The user just pressed button “X”

* The pressure in vessel Xis Y psi at time Z

Needs to work across platforms
— E.g., Javaon PCand C on Arduino



Java Communications uses Streams

* Upstream writer, downstream reader

e Destination reads from stream

Source

* Source writes to stream

* Either endpoint might be a file or some other
input/output device, e.g.,
— Dest. could be Arduino connected via serial port
— Source could be the keyboard



Stream Conventions

FIFO ordering (First-In-First-Out)

Protocol must be same at both ends of stream
for effective communication to take place

— Stream of bytes? chars? integers? what is a char?

Properties supported by streams that “wrap”
other streams, e.g.,

InputStream in = new InputStream(...);
BufferedStream dataln = new BufferedStream(in);

Watch video for examples of user input streams



Wrapping Streams

A stream can take another stream as a
parameter to its constructor

The outer stream adds functionality to the
wrapped stream

E.g.,

SerialComm sc = new SerialComm(new SerialPort(...));

This is called “decorator” pattern

We will use SerialComm and SerialPort in upcoming
studios and assignments — starting with 4



Communications in Java

* Open COM port with SerialPort object
— Use SerialPort class, which we provide
— Works in Windows and Mac

* Wrap SerialPort with a SerialComm object
— You will write SerialComm class (some of it, anyway)
— What “properties” does SerialComm provide?

* Fixes up a data type inconvenience on input bytes
* Most importantly, provides a debugging capability



SerialComm class Functionality

Read from Write to
Arduino Arduino

SerialPort class

Debug functionality (print data sent or received)

SerialComm class




Back to Communications

e Streams are sequences of bytes
 We need data at a higher level of abstraction

— Integers
— Floats, Doubles
— Characters
— Strings
— More
* Protocols must be designed to enable this
— Build bigger things out of streams of bytes



Individual Data Elements

* Byte — basic network element
— writeByte(), readByte() in SerialComm class
— Serial.read(), Serial.write() in Arduino C

* Character
— Two bytes in Java
— One byte in C

* |Integer
— Four bytes in Java
— Two bytes in C



Observability

* What is really going on?

* Option 1: stare at the code until inspired

— When that doesn’t work, make random change

* Option 2: don’t assume the code you actually
wrote does what you think it does!

— Alter code so that you discover what it really does
* On PCin Java, use the debugger!
e Or use System.out.print() to display on console
* On Arduino in C, use Serial.print()



Observability in Communications

* Need to know what is really going across the
communication link

* On sender and receiver:
— Display what is going out the output stream

— Display what is coming in the input stream
— Show the raw data (sequence of bytes)

* You will build these tools
— This is the primary purpose of SerialComm class



Quiz Time

* Go to Canvas and answer the single question
on Quiz 4A

e A stream delivers bytes in a "first-in, first-out”
order:

— True
— False



Protocol Design

e What do we want to communicate?

* How do we want to say it?



A Protocol for Us

Message format:

1 byte 1 byte 2 to n bytes

Value

Magic
Number

L * Magic number is anchor of message
* Always first byte
* Unlikely in rest of message
* Reader can ignore bytes until it sees
magic number and then receive



A Protocol for Us

Message format:

1 byte 1 byte 2 to n bytes

Value

Magic
Number

LI

* Key tells what type of message

* |ndicates both size and interpretation
e E.g., 2-byte temperature value

* E.g., 4-byte timestamp

 E.g., UTF-8 encoded error string
 Table of legal keys must be maintained




A Protocol for Us

Message format:

1 byte 1 byte 2 to n bytes

Magic
Number

Key Value

1

* Actual content of message
 Key tells how to interpret



Images

* Consider the following bits:
0x002400081881423c

0000 0000 0010 0100 0000 0000 0000 1000
0001 1000 1000 0001 010000100011 1100
 Make 1 dark and O light:



Images

* Arrange in rows, one byte per row:

g

* Each bitis a “pixel” in the image




ixels

Add color and more p




Color

e Additive color — primaries Red, Green, Blue

e Position close together and put diffuser above
— This builds one pixel



	Slide 1: Computer Communications
	Slide 2: Today’s Outline
	Slide 3: Computer Communications
	Slide 4: Java Communications uses Streams
	Slide 5: Stream Conventions
	Slide 6: Wrapping Streams
	Slide 7: Communications in Java
	Slide 8: SerialComm class Functionality
	Slide 9: Back to Communications
	Slide 10: Individual Data Elements
	Slide 11: Observability
	Slide 12: Observability in Communications
	Slide 13: Quiz Time
	Slide 14: Protocol Design
	Slide 15: A Protocol for Us
	Slide 16: A Protocol for Us
	Slide 17: A Protocol for Us
	Slide 18: Images
	Slide 19: Images
	Slide 20: Add color and more pixels
	Slide 21: Color

