3/18/2025

Hardware and Instruction Set
Architecture

CSE 132

Assignment Logistics

* Assignment 5 last demo day is today in OH

— 9 days of break don’t count as late tickets
* Assignment 6 help was posted earlier this

week

— 2 additional late tickets provided for everyone

— Use for assignment 6 or wherever it benefits you
* Assignment 7 due date pushed 1 week

— Now due Mar 31

— Quiz 7B also due Mar 31

Schedule Logistics

* Last 3 modules of semester will focus on
assembly language
— Lecture today, next Wed, and Apr 9 (after exam 2)
— Three assignments, first due Apr 7
— There will be quizzes on this material
* Lecture next Wed includes review for exam 2
— Material in modules 4 to 7
— April 2, in class
* Last lecture (Apr 16) will be review for exam 3
— Material will not be cumulative, just modules 8 to 10
— April 23, in class

Simple Computer System

Fetch-Decode-Execute Cycle

* Fetch: grab (fetch) the instruction to be
executed. It’s address is in the instruction
pointer (IP) or program counter (PC)

* Decode: figure out what instruction it is and
what is to be done (e.g., this is an ADD inst.
that needs two values from the register file)

* Execute: do the real work and store the result
somewhere (as told by the instruction)

register file
control logic)- ------------------ » arithmetic
logic unit
(ALU)
program instruction
counter (PC) register
program data peripherals
memory memory (1/0)
For Arduino, all of this is in a single AVR chip.
Chips of this type are called “microcontrollers”
4
Fetch
register file
control logic)- ------------------ » arithmetic
logic unit
(ALU)

program instruction
counter (PC) register

1

program data peripherals
memory memory (1/0)

Fetch

control logic

|

program
counter (PC)

instruction
register

register file

3/18/2025

arithmetic
logic unit
(ALU)

control logic

Decode
register file
R arithmetic
logic unit
(ALU)

program
counter (PC)

instruction
register

1

program data peripherals program data peripherals

memory memory (V0) memory memory (1/0)
7 8

Execute Execute (2)
register file register file
CONtrol l0gic [e- e » arithmetic CONtrol 10gic [a-weeeseesses » arithmetic
: logic unit logic unit
(ALU) (ALU)
program instruction i program instruction
counter (PC) register counter (PC) register

program data peripherals program data peripherals

memory memory (V0) memory memory (1/0)
9 10

Execute (3) Abstraction Levels
register file —
applications
CONtrol logic. [geemerves ! arithmetic library, middleware APTs
logic unit
(ALV) high-level language (HLL)
program instruction : assembly language
counter (PC) register
machine language
microprocessor
program data peripherals logic gates
memory memory (/o)
VLSI technology

11 12

HLLs, assembly, vs. machine language

* machine language = binary (i.e., computer
readable) image of program code

* assembly language = human readable (and
writeable) syntax directly representing
machine language

Cm o

* one-to-one mapping between asm and
machine language

3/18/2025

13

HLLs, assembly, vs. machine language

* high-level language = designed for human
specification of algorithms and applications

G

* one-to-many mapping between HLL and
machine language

* Assembly/machine language is very much
architecture dependent

e HLLs are (largely) architecture independent

Why use assembly language?

* Direct control over the hardware

— “I want the machine to execute these exact
instructions.”

* Historical reasons
— execution efficiency (speed, code size, etc.)
— lack of suitable HLL compiler (embedded)
* Today
— Limited need as an authoring language
— Very useful for investigation — understanding!

14

G source files
7

15

gcc workflow

Yo
assembler

e hy {goe) (as) {id) (a.out)
librares

{math, stdio)

compiler linker executablg

Instruction Set Architecture (ISA)

* Programmer’s view of the processor. Itincludes
the following components:

— Instruction set: the collection of instructions that are
supported by the processor.

— Register file: the programmer-visible storage within
the processor.

— Memory: the logical organization of the memory
(again, programmer’s view)

— Operating modes: some processors have subsets of
the instructions that are privileged based on beingin a
given “mode.” (The Arduino AVR processor doesn’t
have this, but the x86 processor inside a PC does.)

16

17

AVR Instruction Set

* Arithmetic operations: (add, sub, mul, etc.)
* Boolean operations: (and, or, etc.)

* Shift operations: (left shift, right shift)

e Comparison operations: (<, g, >, 2, =, #)

* Memory operations: (load, store)

— Data movement operations are the only ops that
reference memory, all others are to/from registers

18

AVR Instruction Set

* Control flow operations:
— Unconditional branch: (jmp)
— Conditional branch: (breq, brne, etc.)
— Procedure call/return: (call, ret)

* Peripheral access: (in, out)

» System operations: (nop, sleep, etc.)

19

Status Register

* SREG is status register = status bits retaining
results of previous operations:
— C—carry —result of unsigned add is too large
— Z—zero — result of previous operation is 0
— N — negative — result of operation is negative
—V —overflow — result of signed op is out of range
— S —sign —true sign = N xor V
— H - half carry — used for BCD arithmetic
— T — bit copy — used by bit load and store inst.
— | —interrupt — interrupts are enabled

21

Pseudo-operations

Pseudo-ops are commands to assembler

Text means “text section”, or
instructions are next
.data means “data section”
.byte reserves data storage
var: .byte 10

reserves one byte, initializes it to 10, and makes
var a label that is address of byte

23

3/18/2025

AVR Register File

* 32 general-purpose registers in the AVR ISA:
— Each 8 bits wide, named RO to R31

— Sometimes paired for 16-bit data — e.g., (R5:R4) has
least significant bits in R4 and msbits in R5

— Last 3 register pairs used for addressing — they are
named X (R27:R26), Y (R29:R28), and Z (R31:R30)

* 3 special-purpose registers
— PC - program counter (16 bits wide)
— SREG — Status register (8 bits wide)
— SP — stack pointer (16 bits wide), for system stack

20

General Form

label: opcode operands comment
* Label is optional
* Opcode is the specific instruction (e.g., add)
* Operands specify data for operation

— AVR is 2-operand machine, 1% operand is dest.
* Comments use different notations

— Many assemblers (incl. AVR) , comment
— Or some other notation, e.g., # comment

22
Example
byte rshift2(byte x) {
return(x » 2);
}

text .code segment follows
.global rshift2 ;tell linker about rshift2
rshift2:

Isr r24 .do actual work
Isr r24 :result is in r24
Idi r25, 0 :return value in r25:r24

ret ;return

24

Addressing Modes

* Register addressing — operand is in register

add Rd,Rr
N N
| | L source operand
| L destination operand
L operation (op code)

Rd <~ Rd +Rr

0<d<31,0<r<31

25

Cautions

* Assembly has no understanding of data type
— Programmer must handle multi-byte data
— No conversions, Load (Id) just copies bits in
memory to same bits in register
* Addresses are 16 bits

— Requires two registers (r31:r30) and two loads
* lo8(x) gives low byte of x, hi8(x) gives high byte of x
* Use Load Immediate (ldi), because X is the address

27

Register Usage Conventions in AVR C

Register | Description | Assembly code called from C Assembly code that calls C
(callee) (caller)

Temporary Save and restore if using Save and restore if using

* Immediate addressing — operand is explicitly
present in code

subi Rd, 10
T

L “immediate” operand

Rd « Rd - 10

* Constant values use C notation:
— Default base is 10
— Hex uses Ox notation (10, is written 0x10)
— Negative constants are allowed, e.g., -12

26

Assembly and C

Each can call the other, but assembly routine
must follow rules set by C compiler

rO is temporary, alter with impunity

rlis zero, if changed in assembly, change back
r2 torl7 and r28 to r29 are callee save

— Called routine must save if it wishes to use register
* r18tor27 and r30 to r31 are caller save

— Calling routine must save register if value is to be
preserved across the call

29

rl Always zero Must clear before returning Must clear before calling
r2-r17
r28 callie- Save and restore if using Can freely use

save
r29
r18-r27

“caller- —
r30 save” Can freely use Save and restore if using
r31

Parameters and Return Values

* Two-byte return values go in r25:r24
* Parameters go in register pairs

— First parameter in r25:r24

—Second param. in r23:r22

— Third param. in r21:r20

— Etc.

* One-byte return values and parameters use
low byte of two-byte register pairs

31

3/18/2025

Multi-byte Data Manipulation

* Use bits in SREG to save intermediate values
* C bit (carry) for addition, e.g,
r9:r8 < r9:r8 + rb:r4

add r8,r4 adds Isbits and puts carry in C
adcr9,r5 ;uses carry from prev. add

32

3/18/2025

