
3/18/2025

1

Hardware and Instruction Set
Architecture

CSE 132

Assignment Logistics

• Assignment 5 last demo day is today in OH
– 9 days of break don’t count as late tickets

• Assignment 6 help was posted earlier this
week
– 2 additional late tickets provided for everyone
– Use for assignment 6 or wherever it benefits you

• Assignment 7 due date pushed 1 week
– Now due Mar 31
– Quiz 7B also due Mar 31

Schedule Logistics

• Last 3 modules of semester will focus on
assembly language
– Lecture today, next Wed, and Apr 9 (after exam 2)
– Three assignments, first due Apr 7
– There will be quizzes on this material

• Lecture next Wed includes review for exam 2
– Material in modules 4 to 7
– April 2, in class

• Last lecture (Apr 16) will be review for exam 3
– Material will not be cumulative, just modules 8 to 10
– April 23, in class

Simple Computer System

For Arduino, all of this is in a single AVR chip.
Chips of this type are called “microcontrollers”

Fetch-Decode-Execute Cycle

• Fetch: grab (fetch) the instruction to be
executed. It’s address is in the instruction
pointer (IP) or program counter (PC)

• Decode: figure out what instruction it is and
what is to be done (e.g., this is an ADD inst.
that needs two values from the register file)

• Execute: do the real work and store the result
somewhere (as told by the instruction)

Fetch

1 2

3 4

5 6

3/18/2025

2

Fetch Decode

Execute Execute (2)

Execute (3) Abstraction Levels

high-level language (HLL)

applications

library, middleware APIs

assembly language

machine language

microprocessor

logic gates

VLSI technology

7 8

9 10

11 12

3/18/2025

3

HLLs, assembly, vs. machine language

• machine language = binary (i.e., computer
readable) image of program code

• assembly language = human readable (and
writeable) syntax directly representing
machine language

• one-to-one mapping between asm and
machine language

asm ml

HLLs, assembly, vs. machine language
• high-level language = designed for human

specification of algorithms and applications

• one-to-many mapping between HLL and
machine language

• Assembly/machine language is very much
architecture dependent

• HLLs are (largely) architecture independent

HLL

ml
ml
ml
ml

Why use assembly language?

• Direct control over the hardware
– “I want the machine to execute these exact

instructions.”

• Historical reasons
– execution efficiency (speed, code size, etc.)
– lack of suitable HLL compiler (embedded)

• Today
– Limited need as an authoring language
– Very useful for investigation – understanding!

gcc workflow

Instruction Set Architecture (ISA)

• Programmer’s view of the processor. It includes
the following components:
– Instruction set: the collection of instructions that are

supported by the processor.
– Register file: the programmer-visible storage within

the processor.
– Memory: the logical organization of the memory

(again, programmer’s view)
– Operating modes: some processors have subsets of

the instructions that are privileged based on being in a
given “mode.” (The Arduino AVR processor doesn’t
have this, but the x86 processor inside a PC does.)

AVR Instruction Set

• Arithmetic operations: (add, sub, mul, etc.)
• Boolean operations: (and, or, etc.)
• Shift operations: (left shift, right shift)
• Comparison operations: (<, ≤, >, ≥, =, ≠)
• Memory operations: (load, store)

– Data movement operations are the only ops that
reference memory, all others are to/from registers

13 14

15 16

17 18

3/18/2025

4

AVR Instruction Set

• Control flow operations:
– Unconditional branch: (jmp)
– Conditional branch: (breq, brne, etc.)
– Procedure call/return: (call, ret)

• Peripheral access: (in, out)
• System operations: (nop, sleep, etc.)

AVR Register File
• 32 general-purpose registers in the AVR ISA:

– Each 8 bits wide, named R0 to R31
– Sometimes paired for 16-bit data – e.g., (R5:R4) has

least significant bits in R4 and msbits in R5
– Last 3 register pairs used for addressing – they are

named X (R27:R26), Y (R29:R28), and Z (R31:R30)

• 3 special-purpose registers
– PC – program counter (16 bits wide)
– SREG – Status register (8 bits wide)
– SP – stack pointer (16 bits wide), for system stack

Status Register

• SREG is status register  status bits retaining
results of previous operations:
– C – carry – result of unsigned add is too large
– Z – zero – result of previous operation is 0
– N – negative – result of operation is negative
– V – overflow – result of signed op is out of range
– S – sign – true sign = N xor V
– H – half carry – used for BCD arithmetic
– T – bit copy – used by bit load and store inst.
– I – interrupt – interrupts are enabled

General Form

label: opcode operands comment

• Label is optional
• Opcode is the specific instruction (e.g., add)
• Operands specify data for operation

– AVR is 2-operand machine, 1st operand is dest.

• Comments use different notations
– Many assemblers (incl. AVR) ; comment
– Or some other notation, e.g., # comment

Pseudo-operations

Pseudo-ops are commands to assembler
.text means “text section”, or

instructions are next
.data means “data section”
.byte reserves data storage

var: .byte 10

reserves one byte, initializes it to 10, and makes
var a label that is address of byte

Example

byte rshift2(byte x) {
return(x >> 2);

}

.text ;code segment follows

.global rshift2 ;tell linker about rshift2
rshift2:

lsr r24 ;do actual work
lsr r24 ;result is in r24
ldi r25, 0 ;return value in r25:r24
ret ;return

19 20

21 22

23 24

3/18/2025

5

Addressing Modes
• Register addressing – operand is in register

add Rd, Rr Rd  Rd + Rr
  
| |  source operand
|  destination operand
 operation (op code)

0 ≤ 𝑑 ≤ 31, 0 ≤ 𝑟 ≤ 31

• Immediate addressing – operand is explicitly
present in code

subi Rd, 10 Rd  Rd – 10

 “immediate” operand

• Constant values use C notation:
– Default base is 10
– Hex uses 0x notation (1016 is written 0x10)
– Negative constants are allowed, e.g., -12

Cautions

• Assembly has no understanding of data type
– Programmer must handle multi-byte data
– No conversions, Load (ld) just copies bits in

memory to same bits in register

• Addresses are 16 bits
– Requires two registers (r31:r30) and two loads

• lo8(x) gives low byte of x, hi8(x) gives high byte of x
• Use Load Immediate (ldi), because x is the address

Assembly and C

Each can call the other, but assembly routine
must follow rules set by C compiler
• r0 is temporary, alter with impunity
• r1 is zero, if changed in assembly, change back
• r2 to r17 and r28 to r29 are callee save

– Called routine must save if it wishes to use register
• r18 to r27 and r30 to r31 are caller save

– Calling routine must save register if value is to be
preserved across the call

Register Usage Conventions in AVR C

Assembly code that calls C
(caller)

Assembly code called from C
(callee)

DescriptionRegister

Save and restore if usingSave and restore if usingTemporaryr0
Must clear before callingMust clear before returningAlways zeror1

Can freely useSave and restore if using“callee-
save”

r2-r17
r28
r29

Save and restore if usingCan freely use“caller-
save”

r18-r27
r30
r31

Parameters and Return Values

• Two-byte return values go in r25:r24
• Parameters go in register pairs

– First parameter in r25:r24
– Second param. in r23:r22
– Third param. in r21:r20
– Etc.

• One-byte return values and parameters use
low byte of two-byte register pairs

25 26

27 29

30 31

3/18/2025

6

Multi-byte Data Manipulation

• Use bits in SREG to save intermediate values
• C bit (carry) for addition, e.g,

r9:r8  r9:r8 + r5:r4

add r8, r4 ;adds lsbits and puts carry in C
adc r9, r5 ;uses carry from prev. add

32

