
3/4/2025

1

Analog Output

CSE 132

Today’s Outline

• Analog Output

• FSM for Receiving Protocol Messages

Pulse Width Modulation (PWM)

• Analog output, built using a digital output
• Technique is to exploit the fact that many 

physical devices are slow, and respond to 
average of a fast-moving signal
– E.g., What does our eye do with 30 frames/sec?
– Our brain smooths out the motion so it looks 

continuous to us

• Send digital signal up and down quickly, and 
the “analog output” is the average value

50% Analog Output

• 500 Hz period (2 ms)
• Repeating signal, ½ time 5 V and ½ time 0 V
• Average is 2.5 V

0

1

2

3

4

5

0 1 2 3 4 5 6

time (ms)

di
gi

ta
l o

ut
pu

t 
(V

)

10% Analog Output

• Same 500 Hz period (2 ms)
• In this case, 10% time 5 V and 90% time 0 V
• Average is 0.5V

time (ms)

di
gi

ta
l o

ut
pu

t 
(V

)

0

1

2

3

4

5

0 1 2 3 4 5 6

90% Analog Output

• Same 500 Hz period (2 ms)
• In this case, 90% time 5 V and 10% time 0 V
• Average is 4.5V

time (ms)

di
gi

ta
l o

ut
pu

t 
(V

)

0

1

2

3

4

5

0 1 2 3 4 5 6

1 2

3 4

5 6



3/4/2025

2

analogWrite()

• analogWrite(pin, value)
– pin is one that supports PWM outputs, not all do!
– value is 8-bit analog value (range is 0 to 255)

• Useful for slow-moving physical devices, e.g.,
– LEDs (actually, it is our eyes that are slow)
– 5 V motors (hard to start/stop at 500 Hz)

• Can be used for other devices if averaging is 
done by circuitry between Arduino and device 

Use Cases

• LEDs
– Analog value 255  full bright
– Analog value 0  off
– Analog value 127  half intensity

• DC motors
– Analog value 0  stopped
– Analog value 127  half speed
– Analog value 255  full speed

• Servo motors
– Analog value tells holding position
– Range 0 to 180 degrees

Communications Receiver

• First check to see if byte has arrived
– Arduino

• Serial.available() returns integer count of available bytes
– Java

• s.available() returns Boolean if a byte is available

• Next read one (and only one) byte
– Serial.read() on Arduino (returns an int)

• Return value is -1 if nothing received, byte value otherwise
– s.readByte() on Java (returns a byte)

• Check available() prior to each read!

Not Like This!

if (Serial.available() > 0)
b1 = Serial.read();

if (Serial.available() > 0)
b2 = Serial.read();

// code that assumes b1 and b2 are good

What could go wrong here?
What if the two bytes are sent based on a human 
pressing a button, and the human takes a while 
between the two button presses?

A Byte Might Not Be Available

if (Serial.available() > 0)
b1 = Serial.read();

else
wait until Serial.available() is > 0!!!!

The above looks like it will block (note: it will!)
We need to transition to a non-blocking approach
FSMs to the rescue!

FSM to Receive 2 Byte Integer

• Initial state: Wait4byte1

• State transition: receipt of a byte
– available() followed by read()
– Save incoming byte on transition

Wait4byte1 Wait4byte2

7 8

10 11

12 13



3/4/2025

3

FSM to Receive 2 Byte Integer

while (true) 
if (Serial.available() > 0)

inputByte = Serial.read();
switch (state) {
case Wait4byte1: b1 = inputByte;

nextState = Wait4byte2;
case Wait4byte2: b2 = inputByte;

nextState = Wait4byte1;
inputValue = (b1 << 8) + b2;

}
}

Receive 2 Byte Integer

• Use FSM to save b1 (first byte) and b2 (second)

• Compose int from 2 bytes:
int value = (b1 << 8) + b2;

• Watch out for sign extension in Java
int value = ((0xff & b1) << 8) + (0xff & b2);
– Because bytes get promoted to int before math 

operations (silly Java rule)

Communications and Delta Time
while (true)

now = millis()
if (byte available) then

read byte and save (i.e., FSM)
endif
if (delta time has expired)

do time-based stuff
endif

endwhile

Our Protocol

Magic
Number Key Value

Examples:
• MAG_NUM is magic number
• KEY_TIME is key for 4-byte time value
• KEY_TEMP is key for 2-byte temperature

Message format:
1 byte 1 byte 2 to n bytes

FSM to Receive Our Protocol

States:
• A is wait for magic number
• B is wait for key
• C to F wait for bytes of time value
• G to H wait for bytes of temperature value

Upcoming Schedule

• No office hours during break
– No late tickets charged for 7 days
– Looking to staff office hours Sunday Mar 16

• Assignment 6 due Monday, Mar 17 (just after break)
• Studio 7 is Monday, Mar 17

– Analog outputs driving motors (drive wheels on car)
• Assignment 7 is due Monday, Mar 24

– Protocol messages both directions
– Non-blocking code on Java side and Arduino side
– Analog outputs driving servo motor and LEDs

14 15

16 17

18 19


