
3/25/2025

1

Assembly Language
and

Exam 2 Review

CSE 132

Logistics

• Assignment 7 due next Monday (Mar 31)
– No studio that day, available for help

• Exam 2 is next Wednesday (Apr 2)
– Review today
– Subject matter is modules 4 to 7

• Assignment 8 due Monday after exam (Apr 7)
– That material will not be on exam 2

• Assignment 9 material is in today’s lecture
– Control flow in assembly language

General Form

label: opcode operands comment

• Label is optional
• Opcode is the specific instruction (e.g., add)
• Operands specify data for operation

– AVR is 2-operand machine, 1st operand is dest.

• Comments use different notations
– Many assemblers (incl. AVR) ; comment
– Or some other notation, e.g., # comment

Pseudo-operations

Pseudo-ops are commands to assembler
.text means “text section”, or

instructions are next
.data means “data section”
.byte reserves data storage

var: .byte 10

reserves one byte, initializes it to 10, and makes
var a label that is address of byte

Example

byte rshift2(byte x) {
return(x >> 2);

}

.text ;code segment follows

.global rshift2 ;tell linker about rshift2
rshift2:

lsr r24 ;do actual work
lsr r24 ;result is in r24
ldi r25, 0 ;return value in r25:r24
ret ;return

Assembly Control Flow

• Unconditional Jump –

jmp [label]

e.g.,
jmp L1

…
L1: target instruction

…

ijmp indirect, dest in Z

1 2

3 4

5 6

3/25/2025

2

Conditional Control Flow

• In AVR, separate expression eval and cond branch inst.

• Compare –

cp Rd, Rr

• Perform operation temp = Rd – Rr, throw away temp
and set flags in SREG based on results of subtraction

• Flags can also be set as a result of normal arithmetic
and/or logical operations

Conditional Jumps

br[cond] [label]

e.g.,
brne j_loop

• There are three classes of conditionals:
– General (Simple)
– Signed
– Unsigned

General Conditionals

breq zero (Z set)
brne not zero (Z clear)
brcs carry (C set)
brcc no carry (C clear)

Signed Conditionals

brge greater than or equal (Rd ≥ Rr)
brlt less than (Rd < Rr)

Unsigned Conditionals

brsh same or higher (Rd ≥ Rr)
brlo lower than (Rd < Rr)

Control Flow in C

if … then …
if ([cond expr]) {

[true body]
}
[main body]

e.g.,
if (var1 < var2) {

var1 = var1 + var2;
var2 = 0;

}
…

if … then

if … then …

if ([cond expr]) {
[true body]

}
[main body]

Assembly:

cp [cond exp opers]
br[!cond] main_body
[true body]

main_body:
[main body]

7 8

9 10

11 12

3/25/2025

3

if … then

if (var1 < var2) {
var1 = var1 + var2;
var2 = 0;

}
…

lds r7, var1
lds r8, var2
cp r7, r8
brge main_body
add r7, r8
sts var1, r7
sts var2, r1

main_body:
…

if … then (opposite test)

if (var1 > var2) {
var1 = var1 + var2;
var2 = 0;

}
…

But no brle instruction!

lds r7, var1
lds r8, var2
cp r8, r7
brge main_body
add r7, r8
sts var1, r7
sts var2, r1

main_body:
…

if … then … else

if ([cond expr]) {
[true body]

}
else {

[false body]
}
[main body]

cp [cond exp opers]
br[!cond] false_body
[true body]
jmp main_body

false_body:
[false body]

main_body:
[main body]

if … then … else
if (var1 == var2) {

var1 = var1 + var2;
var2 = 0;

}
else {

var2 = var2 + var1;
var1 = var2;

}

lds r7, (var1)
lds r8, (var2)
cp r8, r7
brne false_body
add r7, r8
sts (var1), r7
sts (var2), r1
jmp main_body

false_body:
add r8, r7
sts (var2), r8
sts (var1), r8

main_body: …

Conditional if … then … else

if (([cond1] && [cond2]) || [cond3]) {
[true body]

}
else {

[false body]
}
[main body]

• Note: evaluation order of compound expression
is left to right, only conditions that need to be
evaluated are evaluated

Conditional if … then … else
if (([cond1] && [cond2]) || [cond3])

Evaluation order for above compound expression:

13 14

15 16

17 18

3/25/2025

4

if (([cond1] && [cond2]) || [cond3])

cp [cond1]
br[!cond1] check_cond3
cp [cond2]
br[cond2] true_body

check_cond3:
cp [cond3]
br[cond3] true_body
[false body]
jmp main_body

true_body:
[true body]

main_body:
[main body]

for loop
for ([ind var] = [init val]; [cond expr]; [update ind var]) {

[loop body]
}
[main body]

e.g.,
for (i=0; i<24; i++) {

mask = 1 << i;
status_bit[i] = status & mask;
status_bit[i] >>= i;

}

for loop
for ([ind var] = [init val]; [cond expr]; [update ind var]) {

[loop body]
}
[main body]

• Assembly
ldi [ind var], [init val]

for_loop: cp [cond expr]
br[!cond] loop_exit
[loop body]
[update ind var]
jmp for_loop

loop_exit:
[main_body]

while loop
while ([cond expr]) {

[loop body]
}
[main body]

• Assembly
while_loop:

cp [cond expr oper]
br[!cond] exit_while
[loop body]
jmp while_loop

exit_while:
[main body]

Exam 2 Review

Exam is next week!

Logistics and Style
• Date and Time

– Apr 2, 1pm to 2:20pm, starting right at 1!
– Hillman 60 (regular lecture hall, right here)
– Fill out top sheet when you arrive, but don’t start yet

• Questions
– Question 1 will be a collection of short answer things

(e.g., true/false, multiple choice)
– Questions 2 through N will be longer (going more in

depth on a particular subject)
• One-page “crib sheet” allowed

– 8.5” x 11” sheet, front and back, whatever you want
to include (content-wise)

19 20

21 22

31 32

3/25/2025

5

Help in Preparation

• Take practice exam
– For extra credit
– 100% of questions are from old exams

• Review B quizzes
– They are designed to be in the same style as the

exam

• Attend TA hours
• Ask questions on Piazza

Coverage
• Modules 4, 5, 6, and 7 are all fair game

– Prep material for modules 4 to 7
– Studios 4 to 7
– Assignments 4 to 7

• Material from earlier that is needed to do
modules 4, 5, 6, and 7 is still fair game
– I.e., the test isn’t designed to be comprehensive,

but the material in the class is somewhat, so it
can’t be completely avoided

Communications
• Information representation

– In Java vs. in Arduino vs. in comm. protocol
– Integers, characters, strings

• Protocol design
– Magic numbers, error recovery, debugging
– Keys, what are they and what do they do for you?
– Tradeoffs in protocol design choices

More Communications
• Stream concepts

– Sequence of bytes
– In-order delivery, no guaranteed delivery

• How to program on both platforms
– Both sending and receiving (e.g., FSM receiver)
– Both individual bytes and whole messages

Peripheral Devices
• Pushbuttons

– Meaning, polarity
– Physical construction
– Debouncing

• Analog outputs
– Pulse Width Modulation

• Time-based inputs
– Ultrasonic distance measurement

Models of Computation

• Finite State Machines
– Bubble diagrams
– Simulation
– Design for communications

• FSM Implementation
– enums for state variable
– Use of switch statement

33 34

35 36

37 38

3/25/2025

6

Practicalities

• How to use development environment(s)
• Commonly used library functionality

– Controlling pins (in and out)
– Printing to attached PC
– Timing

• Details of Arduino C language
– Standard data types
– Similarities and differences relative to Java
– Bit-level and logical manipulation

Questions?

• Come early (just before 1pm) if you can, so we
can start on time.

39 40

