
2/17/2025

1

Communication Protocols

CSE 132

Today’s Outline

• Review communicating between PC and 
Arduino
– Java on PC (either Windows or Mac)

• Protocol Design

• Distance Measurement

Review of Communications

• Streams are sequences of bytes
• We need data at a higher level of abstraction

– Integers
– Floats, Doubles
– Characters
– Strings
– More

• Protocols must be designed to enable this
– Build bigger things out of streams of bytes

Individual Data Elements

• Byte – basic network element
– writeByte(), readByte() in SerialComm class
– Serial.read(), Serial.write() in Arduino C

• Character
– Two bytes in Java
– One byte in C

• Integer
– Four bytes in Java
– Two bytes in C

Sending from Arduino

• Byte – basic network element
– Serial.write() – send one byte out serial port
– Only sends least significant bits of argument!

• Serial.write(0x1234) will be received at PC as 0x34

• Character – one byte
– Serial.write(char c) works just fine

• Integer or Unsigned Integer – two bytes
byte highByte = (byte) (0x00ff & (intValue >> 8));
Serial.write(highByte);
byte lowByte = (byte) (0x00ff & intValue);
Serial.write(lowByte);

Sending from Java

• Byte – basic network element
– s.writeByte() – send byte through SerialComm

object s
– Takes Java byte type as an argument

• Character – two bytes
– Only send out least significant byte (= ASCII)
– byte lowByte = (byte) (0x00ff & charValue);
– s.writeByte(lowByte);

1 2

3 4

5 6



2/17/2025

2

Sending from Java

• Integer – 4 bytes in Java
byte b1 = (byte) ((intValue >> 24) && 0xff);
s.writeByte(b1);
byte b2 = (byte) ((intValue >> 16) && 0xff);
s.writeByte(b2);
byte b3 = (byte) ((intValue >> 8) && 0xff);
s.writeByte(b1);
byte b4 = (byte) (intValue && 0xff);
s.writeByte(b2);

• But what if receiver is only expecting 2 bytes?

Receiving

• First check to see if byte has arrived
– Arduino

• Serial.available() returns integer count of available bytes
– Java

• s.available() returns Boolean if a byte is available

• Next read one (and only one) byte
– Serial.read() on Arduino (returns an int)

• Return value is -1 if nothing received, byte value otherwise
– s.readByte() on Java (returns a byte)

• Check available() prior to each read!

FSM to Receive 2 Byte Integer

• Initial state: Wait4byte1

• State transition: receipt of a byte
– available() followed by read()
– Save incoming byte on transition

Wait4byte1 Wait4byte2

Receive 2 Byte Integer

• Use FSM to save b1 (first byte) and b2 (second)

• Compose int from 2 bytes:
int value = (b1 << 8) + b2;

• Watch out for sign extension in Java
int value = ((0xff & b1) << 8) + (0xff & b2);
– Because bytes get promoted to int before math 

operations (silly Java rule)

Communications and Delta Time
while (true)

now = millis()
if (byte available) then

read byte and save (i.e., FSM)
endif
if (delta time has expired)

do time-based stuff
endif

endwhile

Protocol Design

• Communicating more than just a 2-byte int

• What do we want to communicate?

• How do we want to say it?

7 8

9 10

11 12



2/17/2025

3

A Protocol for Us

Magic
Number Key Value

• Magic number is anchor of message
• Always first byte
• Unlikely to be in rest of message
• Reader can ignore bytes until it sees 

magic number and then receive

Message format:
1 byte 1 byte 2 to n bytes

A Protocol for Us

Magic
Number Key Value

• Key tells what type of message
• Indicates both size and interpretation
• E.g., 2-byte temperature value
• E.g., 4-byte timestamp
• E.g., UTF-8 encoded error string
• Table of legal keys must be maintained

Message format:
1 byte 1 byte 2 to n bytes

A Protocol for Us

Magic
Number Key Value

• Actual content of message
• Key tells how to interpret

Message format:
1 byte 1 byte 2 to n bytes

UTF-8 Strings

• New string format – different than Java or C
• Used for communication between machines
• Composition

– 2-byte length (msb followed by lsb)
– “length” number of UTF-8 characters (each 1 byte)
– Maximum length of 100 bytes (non-standard

extension for our class)

• Design FSM to receive UTF-8 strings
• Actually, use FSM to receive msgs in protocol

Ultrasonic Ranging

• Measure time for ultrasonic pulse to travel to target and back
• Translate time to distance using speed of sound
• Divide by 2, because sound traveled distance to target twice

Upcoming Schedule

• Assignment 5 due Monday, Mar 3
• Studio 6 is Monday, Mar 3

– Use ultrasonic range finder

• Assignment 6 is due Monday, Mar 17 (first day 
after break)
– Requires use of protocol
– Read chapter 12 for example FSM

• No office hours during break, no late tickets
charged

13 14

15 16

17 18


