
2/4/2025

1

Computer Communications

CSE 132

Today’s Outline

• Communicating between PC and Arduino
– Java on PC (either Windows or Mac)

• Streams in Java

• Protocol Design

• Observability

• Information Representation – beyond numbers

Computer Communications
• Link that provides byte-level data delivery

– Network
– Serial port

• Ability to send and receive on each endpoint
• Must use a protocol to understand anything

other than individual bytes
– Individual data elements (ints, chars, strings, etc.)
– Higher-level, application-specific messages

• The user just pressed button “X”
• The pressure in vessel X is Y psi at time Z

• Needs to work across platforms
– E.g., Java on PC and C on Arduino

Java Communications uses Streams

• Upstream writer, downstream reader

• Source writes to stream
• Destination reads from stream
• Either endpoint might be a file or some other

input/output device, e.g.,
– Dest. could be Arduino connected via serial port
– Source could be the keyboard

Source Dest.

Stream Conventions
• FIFO ordering (First-In-First-Out)
• Protocol must be same at both ends of stream

for effective communication to take place
– Stream of bytes? chars? integers? what is a char?

• Properties supported by streams that “wrap”
other streams, e.g.,

InputStream in = new InputStream(…);
BufferedStream dataIn = new BufferedStream(in);

• Watch video for examples of user input streams

1 2

3 4

5 6

2/4/2025

2

Wrapping Streams

• A stream can take another stream as a
parameter to its constructor

• The outer stream adds functionality to the
wrapped stream

• E.g.,
SerialComm sc = new SerialComm(new SerialPort(…));

• This is called “decorator” pattern
• We will use SerialComm and SerialPort in upcoming

studios and assignments – starting with 4

Communications in Java

• Open COM port with SerialPort object
– Use SerialPort class, which we provide
– Works in Windows and Mac

• Wrap SerialPort with a SerialComm object
– You will write SerialComm class (some of it, anyway)
– What “properties” does SerialComm provide?

• Fixes up a data type inconvenience on input bytes
• Most importantly, provides a debugging capability

Back to Communications

• Streams are sequences of bytes
• We need data at a higher level of abstraction

– Integers
– Floats, Doubles
– Characters
– Strings
– More

• Protocols must be designed to enable this
– Build bigger things out of streams of bytes

Individual Data Elements

• Byte – basic network element
– writeByte(), readByte() in SerialComm class
– Serial.read(), Serial.write() in Arduino C

• Character
– Two bytes in Java
– One byte in C

• Integer
– Four bytes in Java
– Two bytes in C

Observability

• What is really going on?
• Option 1: stare at the code until inspired

– When that doesn’t work, make random change

• Option 2: don’t assume the code you actually
wrote does what you think it does!
– Alter code so that you discover what it really does

• On PC in Java, use the debugger!
• Or use System.out.print() to display on console
• On Arduino in C, use Serial.print()

Observability in Communications

• Need to know what is really going across the
communication link

• On sender and receiver:
– Display what is going out the output stream
– Display what is coming in the input stream
– Show the raw data (sequence of bytes)

• You will build these tools
– This is the primary purpose of SerialComm class

7 8

9 10

11 12

2/4/2025

3

Information Representation

• We’ve covered integers
– Including 2’s complement

• We’ve covered reals (OK, their approximation)
– Including fixed point and Q notation
– Including floating point

• But there are many other types of information

Text – Characters and Strings

• ASCII – American Standard Code for Information
Interchange
– 7-bit codes representing basic Latin characters and

numbers [A-Z, a-z, 0-9], some common punctuation,
and control characters

– There are a number of extensions to 8 bits, but only
the 7-bit codes really standard.

• Unicode – 8- or 16-bit codes extending to a much
wider set of languages
– The first 128 codes are equivalent to the 7-bit ASCII

standard

C Strings

• Strings are sequences of ASCII characters, stored
one byte per character (8 bits), terminated by a
NULL (zero) character

• E.g., “Hello!”
01001000 ‘H’ 0x48
01100101 ‘e’ 0x65
01101100 ‘l’ 0x6c
01101100 ‘l’ 0x6c
01101111 ‘o’ 0x6f
00100001 ‘!’ 0x21
00000000 NULL 0x00

ASCII Facts

• Numerical digits are assigned in order of
increasing value

i.e., ‘0’ = 0x30
‘1’ = 0x31
‘2’ = 0x32

‘9’ = 0x39

• For single character, value conversion is simply a
difference of 0x30

More ASCII Facts
• Letters are also assigned in lexicographical order:

‘A’ = 0x41
‘B’ = 0x42

‘Z’ = 0x5a

‘a’ = 0x61
‘b’ = 0x62

‘z’ = 0x7a

• Upper/lower case conversion is simply a difference of 0x20

Still More ASCII Facts

• First 32 characters (0-0x1f) are control codes:
0x00 ^@ null (C string terminator)
0x07 ^G bell
0x0a ^J line feed (or newline)
0x0c ^L form feed
0x0d ^M carriage return

14 15

16 17

18 19

2/4/2025

4

Line breaks are not standardized

• End of line conventions differ by operating
system:
– In MS Windows: 0x0a, 0x0d is end of line
– In Unix/Linux: 0x0a is end of line
– 0x0a, linefeed, is sometimes called ‘newline’

• In C, ‘\n’ is mapped to OS end of line
termination convention

Java Strings

• Strings are represented via the class “String”
• String objects are immutable
• The character encoding is system specific,

e.g., either UTF-8 or UTF-16 (typical).
• The length is an instance variable in the object

(in most implementations)
• The characters are stored in a char[] array

(again, in most implementations)

Unicode

• Standard for character representation
– Supports wide variety of languages, symbols

• UTF-8
– Variable length code with 8-bit code units
– U+0000 to U+007F are the same as ASCII

• UTF-16
– Uses 16-bit code units, also variable length
– Latin + Greek + Cyrillic + Coptic + Armenian + Hebrew +

Arabic + Syrian + Tāna + N’Ko fit in 16 bits
• UTF-32

– Uses 32-bit code units, fixed length

Communicating Strings
• Not just a sequence of two-byte Java characters!
• Network communication is language agnostic,

so must acknowledge that others do things in
different ways

• UTF-8 is common character encoding
• UTF-8 string is

– 2-byte length (of bytes in string), followed by
– Characters in UTF-8 encoding

Images

• Consider the following bits:
0x002400081881423c
0000 0000 0010 0100 0000 0000 0000 1000
0001 1000 1000 0001 0100 0010 0011 1100
• Make 1 dark and 0 light:

Images

• Arrange in rows, one byte per row:

• Each bit is a “pixel” in the image

20 21

22 23

24 25

2/4/2025

5

Add color and more pixels Color

• Additive color – primaries Red, Green, Blue

• Position close together and put diffuser above
– This builds one pixel

Protocol Design

• What do we want to communicate?

• How do we want to say it?

A Protocol for Us

Magic
Number Key Value

• Magic number is anchor of message
• Always first byte
• Unlikely in rest of message
• Reader can ignore bytes until it sees

magic number and then receive

Message format:
1 byte 1 byte 2 to n bytes

A Protocol for Us

Magic
Number Key Value

• Key tells what type of message
• Indicates both size and interpretation
• E.g., 2-byte temperature value
• E.g., 4-byte timestamp
• E.g., UTF-8 encoded error string
• Table of legal keys must be maintained

Message format:
1 byte 1 byte 2 to n bytes

A Protocol for Us

Magic
Number Key Value

• Actual content of message
• Key tells how to interpret

Message format:
1 byte 1 byte 2 to n bytes

26 27

28 29

30 31

2/4/2025

6

Logistics

• Exam 1 is coming – Feb 19 (2 weeks from today)
– Next week’s lecture will include review for exam
– Review will include boundaries on scope
– Communication is not included (saved for exam 2)
– Information representation is included

• E.g., strings in Java and in C

32

