
1/28/2025

1

Timing and Analog Input

CSE 132

Simple Timing
• Use Thread.sleep() in Java

– Argument is integer number of milliseconds before
the method returns

for (int i=0; i < endTime; i++) {
Thread.sleep(1000);
System.output.println(i + “ seconds have elapsed”);

}

• Use delay() on Arduino
– Same approach as in Java

Effects of Simple Timing

• What are possible issues with this code?
while (true)

wait for 1 second
do some work
output results

end while

Better Timing
• Use a free-running timer

– unsigned long millis()
– Returns # of milliseconds since reset
– Rolls over to zero after about 50 days

• Now we can use delta time techniques
while (true)

if (millis() > loopEndTime) then
loopEndTime += deltaTime
do some work

end if
end while

Impact of Delta Timing

while (true)
if (millis() > loopEndTime) then

loopEndTime += deltaTime
do some work
output results

end if
end while

What if work has delays?

while (true)
if (millis() > loopEndTime) then

loopEndTime += deltaTime
do some work

end if
end while

Especially if work takes longer than deltaTime!

1 2

3 4

5 6

1/28/2025

2

Think Like a Finite-State Machine

while (true)
if (millis() > loopEndTime) then

loopEndTime += deltaTime
do some work

end if
end while

Do some (but not all) of the work
Remember “state” information (in one or more variables)
Inside delta time conditional if, add switch statement

Finite State Machine (FSM)

• Useful concept for today’s studio software
• Used extensively in hardware and software

systems design and analysis
• Explicitly enumerate (i.e., list) all of the “states”

that our design can have, and articulate:
– What happens (e.g., is output) in each state
– What state is next under what conditions

• “States” represent what our design wishes to
remember

FSM Diagram

0
1

2

3
4

5

6

7

• A 3-bit counter cycles
from 0 to 7, and then
roles over back to 0

• Consider each count
value to be a “state”

• In each state, output is
simply value of count

• In each state, next state
is value+1

Stoplight Controller

NS-G

NS-Y

EW-GEW-Y

Ped

• NS-G: North/South Green

• NS-Y: North/South Yellow

• EW-G: East/West Green

• EW-Y: East/West Yellow

• Ped: Pedestrian Walk

Analog to Digital Conversion

• Convert physical property to voltage signal
• A/D converter on Arduino converts voltage

signal to digital representation
– 10-bit A/D converter has range 0 to 210 – 1

(0 to 1023) for voltage range 0 to VREF

A0 Arduino
physical
sensing

analog
voltage

Understanding Ranges

0

1000

2000

3000

4000

5000

0 20 40 60 80 100

Si
gn

al
 (m

V)

Weight (lb)

𝑠𝑖𝑔𝑛𝑎𝑙 = 𝑚 × 𝑤𝑒𝑖𝑔ℎ𝑡 + 𝑏

𝑠𝑖𝑔𝑛𝑎𝑙 = 43
𝑚𝑉

𝑙𝑏
× 𝑤𝑒𝑖𝑔ℎ𝑡 + 200𝑚𝑉

0

200

400

600

800

1000

0 1000 2000 3000 4000 5000

A
/D

 c
ou

nt
s

Signal (mV)

𝑐𝑜𝑢𝑛𝑡𝑠 = 𝑚 × 𝑠𝑖𝑔𝑛𝑎𝑙 + 𝑏

𝑐𝑜𝑢𝑛𝑡𝑠 = 0.2
𝑐𝑛𝑡

𝑚𝑉
× 𝑠𝑖𝑔𝑛𝑎𝑙 + 0

𝑐𝑜𝑢𝑛𝑡𝑠 = 8.6
𝑐𝑛𝑡

𝑙𝑏
× 𝑤𝑒𝑖𝑔ℎ𝑡 + 40 𝑤𝑒𝑖𝑔ℎ𝑡 = 0.116

𝑙𝑏

𝑐𝑛𝑡
× 𝑐𝑜𝑢𝑛𝑡𝑠 − 4.65

7 8

9 10

11 12

1/28/2025

3

Noisy Analog Signals

• Noise is ever present in analog signals
• For stable signal, quick fix is to average several

readings

𝑎𝑣𝑔 =
1

𝑁
 𝐴/𝐷 𝑖𝑛𝑝𝑢𝑡

ே

ଵ

Information Representation

• We’ve covered integers
– Including 2’s complement

• But there are many other types of numbers

What about fractions?

• Positional number systems work on both sides of
the decimal point (radix point).

• If radix is r (n integer digits, m fractional digits):
val = an-1 · rn-1 + an-2 · rn-2 + … + a0 · r0 + a-1 · r-1 + a-2 · r-2 + a-m · r-m

• e.g., wx.yz16 = w · 16 + x + y · 16-1 + z · 16-2

or wx.yz2 = w · 2 + x + y · 2-1 + z · 2-2

Two kinds of numbers

• Integers – radix point is assumed to be at the
far right end of the digits:
– E.g. 01001110.

• Fixed point – radix point is at a given, fixed
location:
– E.g. 0100.1110
– 0.1001110 is a common representation on digital

signal processors

Q notation
• Qn.m means a number with n+m bits (digits),

n integer and m fractional. Sign bit is often in
addition to this.

• E.g., Q3.4 for 0100.1100, with value 4.75
• Qm means a number with m+1 bits, m are

fractional
• E.g., Q3 notation would have 4 bits and the

following values

– wxyz = w.xyz = w · (-1) + x · (1/2) + y · (1/4) + z · (1/8)

– range is now -1 to +7/8, with resolution 1/8

Floating point representation

What about the reals? Use scientific notation.

In base 10:x · 10y 0.32 × 10-3 = 0.00032

In base 2: x · 2y called floating point

 exponent
 mantissa

13 15

16 17

18 19

1/28/2025

4

IEEE Floating Point

• Limited range of x and y (fixed # of bits) means
we cannot represent every real number
exactly

• IEEE std. 754 describes a standard form for
floating point number representations
– Single precision is 32 bits in size
– Double precision is 64 bits in size

Single precision (32 bits)

31 30 23 22 0
| s | exponent (e) | fraction (f) |

1 8 bits 23 bits

value = (-1)s × 2e-127 × 1.f
 hidden “1”

range = ± 2 × 10±38

31 30 23 22 0
| s | exponent (e) | fraction (f) |

• s = 0, e = 0, f = 0 value = zero
• e = 255, f = 0 value = (-1)s × infinity
• e = 255, f ≠ 0 value = “not a number” triggers

exception
• e = 0, f ≠ 0 denormalized

value = (-1)s × 2-126 × 0.f
 hidden “0”

• Note use of sign-magnitude for entire number,
and excess notation (excess 127) for exponent

Double precision (64 bits)

63 62 52 51 0
| s | exponent (e) | fraction (f) |

1 11 bits 52 bits

value = (-1)s × 2e-1023 × 1.f
 hidden “1”

range = ± 2 × 10±308

e = 0, f ≠ 0 denormalized
value = (-1)s × 2-1022 × 0.f

Studio Logistics
• Come to Urbauer labs
• Form groups of up to 4
• Do the exercises

– Red, Green, and Yellow LEDs available in kit
– OK to use RGB LED for pedestrian signal
– Explore finite-state machines and delta timing

• Get signed out by a TA

20 21

22 23

24

